

No Cost Supercomputing

Parallel Processing on Linux Clusters

Rajkumar Buyya, Monash University, Melbourne, Australia. rajkumar@ieee.org http://www.dgs.monash.edu.au/~rajkumar

Agenda

Cluster ? Enabling Tech. & Motivations
 Cluster Architecture
 Cluster Components and Linux
 Parallel Processing Tools on Linux
 Cluster Facts
 Resources and Conclusions

Need of more Computing Power: Grand Challenge Applications (c) Raj Solving technology problems using computer modeling, simulation and analysis Geographic Information Systems Life Sciences Aerospace Mechanical Design & Analysis (CAD/CAM)

Competing Computer Architectures

- Vector Computers (VC) ---proprietary system provided the breakthrough needed for the emergence of computational science, buy they were only a partial answer.
- Massively Parallel Processors (MPP)-proprietary system high cost and a low performance/price ratio.
- Symmetric Multiprocessors (SMP)

suffers from scalability

Distributed Systems

(c) Raj

difficult to use and hard to extract parallel performance.

Clusters -- gaining popularity

High Performance Computing---Commodity Supercomputing High Availability Computing ---Mission Critical Applications

Technology Trend...

Performance of PC/Workstations components has almost reached performance of those used in supercomputers...

Microprocessors (50% to 100% per year)

Networks (Gigabit ..)

Operating Systems

Programming environment

Applications

(c) Raj

Rate of performance improvements of commodity components is too high.

The Need for Alternative Supercomputing Resources

Cannot afford to buy "Big Iron" machines

due to their high cost and short life span.

cut-down of funding

(c) Raj

don t fit better into today's funding model.

Paradox: time required to develop a parallel application for solving GCA is equal to:

half Life of Parallel Supercomputers.

Clusters are best-alternative!

Supercomputing-class commodity components are available

(c) Raj

- They "fit" very well with today's/future funding model.
- Can leverage upon future technological advances

VLSI, CPUs, Networks, Disk, Memory, Cache, OS, programming tools, applications,...

Best of both Worlds!

High Performance Computing (talk focused on this) parallel computers/supercomputer-class workstation cluster dependable parallel computers # High Availability Computing mission-critical systems fault-tolerant computing

(c) Rai

What is a cluster?

* A cluster is a type of parallel or distributed processing system, which consists of a collection of interconnected <u>stand-alone</u> <u>computers</u> cooperatively working together as a <u>single</u>, integrated computing resource.

***** A typical cluster:

(c) Raj

Network: Faster, closer connection than a typical network (LAN)

Low latency communication protocols

Looser connection than SMP

So What's So Different about Clusters?

- Commodity Parts?
- Communications Packaging?
- Incremental Scalability?
- Independent Failure?
- Intelligent Network Interfaces?
- Complete System on every node
 - virtual memory
 - scheduler
 - files

Nodes can be used individually or combined...

Clustering of Computers for Collective Computating

Demise of Mainframes, Supercomputers, & MPPs

Cluster Configuration..1 Dedicated Cluster

Guarantee at least one workstation to many individuals (when active) Deliver large % of collective resources to few individuals at any one time

Windows of Opportunities

MPP/DSM:

(c) Raj

Compute across multiple systems: parallel.

Network RAM:

Idle memory in other nodes. Page across other nodes idle memory

Software RAID:

file system supporting parallel I/O and reliability, mass-storage.

Multi-path Communication:

Communicate across multiple networks: Ethernet, ATM, Myrinet

Major issues in cluster design

- Size Scalability (physical & application)
- Enhanced Availability (failure management)
- Single System Image (look-and-feel of one system)
- Fast Communication (networks & protocols)
- Load Balancing (CPU, Net, Memory, Disk)
- Security and Encryption (clusters of clusters)
- Distributed Environment (Social issues)
- Manageability (admin. And control)
- Programmability (simple API if required)
- Applicability (cluster-aware and non-aware app.)

Linux-based Tools for

High Availability Computing

High Performance Computing

Hardware

Linux OS is running/driving...

PCs (Intel x86 processors)Workstations (Digital Alphas)SMPs (CLUMPS)Clusters of Clusters

(c) Raj

Linux supports networking with

Ethernet (10Mbps)/Fast Ethernet (100Mbps),
Gigabit Ethernet (1Gbps)
SCI (Dolphin - MPI- 12micro-sec latency)
ATM
Myrinet (1.2Gbps)
Digital Memory Channel
FDDI

Communication Software

Traditional OS supported facilities (heavy weight due to protocol processing)... Sockets (TCP/IP), Pipes, etc. Light weight protocols (User Level) Active Messages (AM) (Berkeley) Fast Messages (Illinois) U-net (Cornell) XTP (Virginia)

(c) Raj

Virtual Interface Architecture (industry standard)

Cluster Middleware

Resides Between OS and Applications and offers in infrastructure for supporting: Single System Image (SSI) System Availability (SA) SSI makes collection appear as single machine (globalised view of system resources). telnet cluster.myinstitute.edu SA - Check pointing and process migration..

(c) Rai

Cluster Middleware

 * OS / Gluing Layers
 Solaris MC, Unixware, MOSIX
 Beowulf Distributed PID

 * Runtime Systems
 Runtime systems (software DSM, PFS, etc.)
 Resource management and scheduling (RMS): CODINE, CONDOR, LSF, PBS, NQS, etc.

(c) Raj

Programming environments

 Threads (PCs, SMPs, NOW..) POSIX Threads Java Threads
 MPI http://www-unix.mcs.anl.gov/mpi/mpich/
 PVM http://www.epm.ornl.gov/pvm/

Software DSMs (Shmem)

 Compilers C/C++/Java/
 Debuggers
 Performance Analysis Tools
 Visualization Tools

Applications

Sequential (benefit from the cluster)
 Parallel / Distributed (Cluster-aware app.)

Grand Challenging applications

Weather Forecasting

(c) Raj

Quantum Chemistry

Molecular Biology Modeling

Engineering Analysis (CAD/CAM)

Ocean Modeling

PDBs, web servers, data-mining

Linux Webserver (Network Load Balancing)

http://proxy.iinchina.net/~wensong/ippfvs/

(c) Raj

*High Performance (by serving through light loaded machine)
 *High Availability (detecting failed nodes and isolating them from the cluster)
 *Transparent/Single System view

CC should support

Multi-user, time-sharing environments
 Nodes with different CPU speeds and memory sizes (heterogeneous configuration)

Many processes, with unpredictable requirements

* Unlike SMP: insufficient "bonds" between nodes

Each computer operates independently

Inefficient utilization of resources

Multicomputer OS for UNIX (MOSIX)

http://www.mosix.cs.huji.ac.il/

- * An OS module (layer) that provides the applications with the illusion of working on a single system
- Remote operations are performed like local operations
- Transparent to the application user interface unchanged

(c) Raj

Preemptive process migration that can migrate--->any process, anywhere, anytime

(c) Rai

- Supervised by distributed algorithms that respond on-line to global resource availability - transparently
- Load-balancing migrate process from over-loaded to under-loaded nodes
- Memory ushering migrate processes from a node that has exhausted its memory, to prevent paging/swapping

MOSIX for Linux at HUJI

***** A scalable cluster configuration: 50 Pentium-II 300 MHz 38 Pentium-Pro 200 MHz (some are SMPs) 16 Pentium-II 400 MHz (some are SMPs) **Over 12 GB cluster-wide RAM** Connected by the Myrinet 2.56 G.b/s LAN Runs Red-Hat 6.0, based on Kernel 2.2.7 Upgrade: HW with Intel, SW with Linux **Download MOSIX:**

http://www.mosix.cs.huji.ac.il/

(c) Raj

Nimrod - A tool for parametric modeling on clusters

CBC For Distributed Systems Technology

##

(c) Raj

Nimrod: A Computational Workbench

- High Level Abstraction for Computational Modellers
- Little or no programming
- Ease of use
- Use of Distributed Computational Resource
- Heterogeneous platforms

%http://www.dgs.monash.edu.au/~davida/nimrod.html

Job processing with Nimrod

sand the balance of	
🔹 👘 на на 🖕 ни н	
★ + 1 + +	
· · · · · · · · · ·	
95.01	
10.00	
1.00	
a trage of	
	- 1
Social	-
1101	- 22
a hugu a	
0000	-
THE L DE STOCKSTOR	:

Description of Parameters

(c) Raj

·	1
\wedge	
<u>_</u>	

	Job 1	Job 2	Job 3
ľ	Job 4	Job S	Job 6
	Job 7	Job 8	Job 9
2	Job 10	Job 1	1 Job 12
	Job 13	Job	14 Job I
	Job I	ld Jol	1 17 <mark>-</mark> Job

Resource Utilization at a Glance

₿РА	RMON: Param	n OpenFran	ne Monito	ring System		- 🗆 ×
File I	Monitor View :	Setup Help				
		J Usage				
	Aggregat Mer	k Usage nory Usage work Usage	le Viewer	Process Viewer	Kernel Data Ca	talog
	O	F	2			
	Physical View	Logical	View	Online Diagnos	tics	

Linux cluster in Top500

(c) Raj

Top500 Supercomputing (www.top500.org) Sites declared Avalon(http://cnls.lanl.gov/avalon/), Beowulf cluster, the 113th most powerful computer in the world.

*70 processor DEC Alpha cluster
*Cost: \$152K
*Completely commodity and Free Software
*price/performance is \$15/Mflop,
*performance similar to 1993 s 1024-node CM-5

Conclusions Remarks

Clusters are promising..

(c) Rai

- Solve parallel processing paradox
- Offer incremental growth and matches with funding pattern
- New trends in hardware and software technologies are likely to make clusters more promising and fill SSI gap..so that
- Clusters based supercomputers (Linux based clusters) can be seen everywhere!